Renewable energies became more and more important in the last years. The production of biogas using agricultural waste and the use of wind and solar energy in combination with water electrolysis is one way to substitute natural gas. Therefore the number of syngas plants is growing very fast. On the other hand, the operation of such plants could be responsible for a significant number of accidents. The main focuses of this contribution are the explosion characteristics and hazards arising from the biogas. Primarily, these are the hazards of fire and explosion induced by flammable components of syngas. However, further hazards are the dangers of asphyxiation and poisoning by gases such as carbon monooxide. These hazards will be the aim of the following article. In order to prevent explosions when storing and handling syngas it is necessary to know the explosion limits of individual gas components and its gas mixtures in mixture with air. However, syngas from gasification unit can vary significantly in its composition. Therefore, for each gas composition the explosion limits would have to be determined. This would require a considerable amount of time and effort. Due to this fact, the explosion limits of syngas are frequently referred to only by the hydrogen fraction of the gas mixture in the safety-relevant literature. In reality as syngas consists of hydrogen, methane, carbon monoxide, carbon dioxide and further residual gases the explosion limits are generally over or underestimated.